Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons

نویسندگان

  • Viviana Siless
  • Pamela Guevara
  • Xavier Pennec
  • Pierre Fillard
چکیده

Non-linear image registration is one of the most challenging task in medical image analysis. In this work, we propose an extension of the well-established diffeomorphic Demons registration algorithm to take into account geometric constraints. Combining the deformation field induced by the image and the geometry, we define a mathematically sound framework to jointly register images and geometric descriptors such as fibers or sulcal lines. We demonstrate this framework by registering simultaneously T1 images and 50 fiber bundles consistently extracted in 12 subjects. Results show the improvement of fibers alignment while maintaining, and sometimes improving image registration. Further comparisons with non-linear T1 and tensor registration demonstrate the superiority of the Geometric Demons over their purely iconic counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of obje...

متن کامل

Improving Registration Using Multi-channel Diffeomorphic Demons Combined with Certainty Maps

The number of available imaging modalities increases both in clinical practice and in clinical studies. Even though data from multiple modalities might be available, image registration is typically only performed using data from a single modality. In this paper, we propose using certainty maps together with multi-channel diffeomorphic demons in order to improve both accuracy and robustness when...

متن کامل

Diffeomorphic demons and the EMPIRE10 challenge

The registration of thoracic images is a common but still challenging problem with critical clinical applications (e.g. radiotherapy and diagnosis). In the context of the EMPIRE10 challenge, we briefly introduce in this paper our registration method based on the diffeomorphic demons algorithm. Although fully automatic and generic (applies to a large variety of images such as brain or thoracic C...

متن کامل

Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images

The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent largedeformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic...

متن کامل

Diffeomorphic demons: Efficient non-parametric image registration

We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011